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1 Overview

Modern radar systems face a variety of challenges due to the ever increasing requirements of robust-
ness, high performance and flexibility in real world scenarios. A type of radar called the cognitive
radar has shown promise in addressing some of these challenges. A cognitive radar possess the
ability to learn from experience through continuous interactions with the environment. This ability
is a key element of cognition, even in human beings. Thus, a cognitive radar is said to be “intelli-
gent” in its functioning. This paper aims to explain the concept of cognitive radars, the different
elements of cognition, and survey some of the latest literature on the design of cognitive radars for
different applications.

2 Introduction

The cognitive radar was first conceived by Simon Haykin [1] in 2006. The idea is inspired from
the echolocation system of a bat. A bat transmits sound waves into the environment and uses
the reflected waves to determine the location of target objects. The bat is also capable of deter-
mining the velocity, elevation, size and other features of the target [2]. Moreover, it can adapt to
the changing behavior of targets and successfully pursue them. It can also adapt to a changing
environment. It is fascinating how these tasks are performed by the bat using a tiny brain and
are yet a challenge to realise in physical radar systems. A major reason is that soon after birth, a
bat learns the whole process through repeated interactions with the environment. This process of
“learning from experience” is a key element of cognition and can be observed even in human be-
ings. This notion of cognition can be used to make a radar system more “intelligent”. Thus, unlike
existing radar systems which work on a specific set of rules developed by a designer, a cognitive
radar seeks to learn its own rules of behavior according to its environment. Since these learned
ruled pertain specifically to the environment and scenario in which the radar works, they result
in superior performance. Therefore, the presence of cognition in a radar can significantly improve
its capabilities across a wide range of applications. It can also enable radars to perform multiple
functions in different environments since the radar is capable of learning when introduced to a new
environment.

The rest of the paper is structured as follows: First, the different types of radar systems
are described and the key distinguishing factors of cognitive radars are noted. Then the term
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cognition is explored, followed by its mathematical description for practical applications. Finally,
a basic cognitive radar system is explained after which a literature survey of the latest trends and
techniques in cognitive radars is presented.

3 Types of Radars

Simon Haykin [3] distinguishes three classes of radars:

1. Traditional Active Radar (TAR): These radars act in a feed-forward manner (the receiver
knows the transmitted waveform). Estimation algorithms might be used (e.g. Kalman Filter).

2. Fore-Active Radar (FAR): This type of radar contains feedback from the receiver to the
transmitter. It is hence said to posses limited intelligence.

3. Cognitive Radar (CR): Develops rules of behavior in a self-organized manner through a process
called learning from experience that results from continued interactions with the environment.

The TAR does not possess any learning capability and hence no cognition. The FAR however,
is adaptive as a result of the feedback loop but its intelligence is limited because it cannot learn
from experience on its own. The cognitive radar on the other hand, can learn from experience in a
self-organized manner, much like a human beings or other animals. This ability is hence the major
distinguishing factor of cognitive radars.

4 Elements of Cognition

In order to realise cognition in physical systems, it is imperative to understand what cognition is,
and what it involves. In his conception of a cognitive radar, Haykin [3] uses Furster’s [4] paradigm
of cognition that consists of the following four fundamental building blocks

1. Perception-Action Cycle: The propagation of information from the receiver to the transmitter
and the subsequent action performed by the transmitter based on this information. This
forms a cycle where the transmitter acts, perceives the result of its actions and acts again
accordingly (analogous to humans using their senses to perceive and act).

2. Memory: The recollection of past experiences. In physical terms, past experiences need to be
stored and retrieved when necessary.

3. Attention: The algorithms that work on the perception-action cycle and memory.

4. Intelligence: The combination of the above three blocks to form the “intelligence” of the
system.

5 A Basic Cognitive Radar

The fundamental blocks discussed in the previous section are put together to form a basic CR
system, whose block diagram [1] is shown in Fig. 1. The transmitter transmits a signal into the
environment and the radar returns are collected by the receiver. Other sensors provide additional
information to the receiver about the state of the environment. These sensors help the receiver
analyze the scene of the environment (e.g., humidity, temperature, etc). The receiver also contains
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Figure 1: Block diagram of a CR system

prior-knowledge that might be useful to make decisions. For example, military radars could be
provided prior knowledge in the form of a map of the surroundings. The radar might even update
its knowledge during its interactions with the environment. The decision making system in the
receiver takes into account both the analyzed scene and the prior knowledge along with the radar
returns (the bayesian tracker is provided as an example). Post making the decision, relevant
information is then fed back to the transmitter which adjusts its characteristics accordingly. In this
sense, the transmitter controls the environment and receiver. It is hence said to be an intelligent
illuminator of the environment.

6 Incorporating Cognition

Although a theoretical formulation of cognition exists, in order to embed it into physical systems
a mathematical description is necessary. This involves breaking down the fundamental elements of
cognition into mathematical formulations. The building blocks of cognition that were discussed in
the previous sections can be realised in radar systems [3] as follows:

1. Perception-Action Cycle: The perception action cycle can be described using well developed
engineering concepts such as:

• Probabilistic modelling of perception at the receiver. This mainly includes bayesian
methods.

• Methods to make the transmitter optimally control the receiver through the environment.
These include dynamic programming, reinforcement learning, etc.

• Information theory to mathematically describe the link between transmitter and receiver.

2. Memory: The process of “learning from memory” is facilitated by memory in both the receiver
and transmitter. The receiver might store information such as a map of the surroundings,
sensor data from the scene analyzer, etc. The decision maker may also require information
to be stored and updated such as in the case of priors when using bayesian methods.

3. Attention: The algorithms that exploit the perception-action cycle and memory to perform
desired tasks form the attention block of the system. For example, the explore-exploit strategy
often used in reinforcement learning.

3



4. Intelligence: The cohesive working of the three above blocks in the system is called the
intelligence of the system.

7 A Literature Survey

Several approaches have been developed based on the ideas discussed in the previous sections to de-
sign cognitive radars for a variety of applications. Among these approaches, reinforcement learning
(RL) proves to be the most promising. This is primarily because reinforcement learning enables the
radar system to learn from experience through continuous interactions with the environment. A
brief overview of reinforcement learning is provided in the subsequent section, followed by a review
of few latest works on RL based design of cognitive radars.

7.1 Reinforcement Learning

Reinforcement learning (RL) is a technique wherein an agent learns behavioral rules through con-
tinuous interactions with the environment. This is analogous to how human beings, for example,
learn to ride a bicycle. The entire process is modelled as a Markov Decision Process in which the
agent transitions between states according to the actions that it performs. An interaction with
the environment involves the agent performing a certain action which takes the agent to a specific
state. The agent also receives a reward for its action. This reward serves as a kind of feedback for
the agent regarding it’s action i.e., favourable actions will result in higher rewards and unfavourable
actions in lower rewards. By maximizing the rewards that it receives, the agent learns to perform
the most favourable actions during its interaction with the environment. Hence, the reward system
in the RL framework of a cognitive radar forms the feed-back loop. The transmitter is an “intel-
ligent illuminator” in the sense that it uses these rewards (feed-back) to change its characteristics
to meet a certain goal.

7.2 Reinforcement Learning based Beam-forming for Massive MIMO Radar
Multi-target Detection

Mostafa et al. [5] propose a RL based method for beam-forming in Massive MIMO radar for multi-
target detection. Beam-forming is a technique for focusing a signal in a particular direction. This
is achieved by generating signals of particular phase, such that they constructively interfere and
form a beam in the required direction. Beamforming not only helps to direct a beam in a particular
direction, but it also optimizes the power usage of the transmitter by transmitting more power in
the required direction and less power in the other directions.

The goal of the RL agent in this work is to learn the best way to beamform at the transmitter
such that the probability of detection is improved, i.e., the transmitter is an “intelligent illuminator”
of the environment. Thus, in this system, the transmitter is the major cognitive component. The
RL framework for the system is described below:

• States: The total number of angle bins that contain targets. The number of states is thus
determined by the total number of targets that the radar is designed to detect.

• Action: Beamforming according to the angle bins that contain targets. This takes the form
of an optimization problem that seeks to optimize the beamforming matrix.

• Reward: The agent receives two kinds of rewards -
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– Positive reward: The sum of the probability of detection (PD) of the targets in the
respective angle cells.

– Negative reward: The sum of PD of the rest of the cells (that are not likely to contain
targets).

– Total reward: Positive reward - Negative reward.

Recall that the purpose of the reward in the RL system is to give the agent an idea of which actions
are favourable and subsequently the agent learns the best actions by maximizing its rewards. Thus,
in the above mentioned reward framework, the agent maximizes the probability of detection by
maximizing its rewards. The agent is trained using the Q-learning algorithm. In simple terms, the
agent beamforms and performs detection using a certain signal model and detection theory which
leads to a state transition, for which the agent receives the corresponding reward. Based on this
reward, the agent decides the next action (facilitated by the learning algorithm) and undergoes the
same process. Hence, after several trials, the agent learns the actions that give the best rewards.

Mostafa et al. show that their RL based beamforming method outperforms an omni-directional
transmitter with equal power allocation at multi-target detection. A comparison of the two for
dynamically changing environments is shown in Figure 2 and Figure 3. The first experiment was
conducted by simulating four targets at spatial frequencies −0.2, 0, 0.2, 0.3, and the locations of the
targets change at T = 50. The probability of false alarm is kept constant at 10−5. In the second
experiment, the SNR due to the targets decrease by 20% every 30 time units. The experiments
use the signal model as defined in [6][7] and detection is performed by hypothesis testing using a
robust Wald-type test. However, according to the application, the proposed RL framework can be
used with a signal model and detection theory of the designer’s choice.

From Figure 2, the probability of detection (PD) is observed to be significantly higher in the
case of RL-based beamforming. However, the probability of detection for the RL agent is low at
the beginning and as the agent learns, the detection performance increases. This can be seen in
Figure 2a where the probability of detection increases to a high value in the first 10 time units.
This is not the case when equal power is allocated since there is no learning involved. The Rl agent
is also able to detect the targets at their new locations after T = 50. Again, the RL agent requires
around 10 time units to learn.

Figure 2: Performance comparison of omni-directional equal power allocation and RL based beam-
forming. The target location changes at T = 50.
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Figure 3: Performance comparison of omni-directional equal power allocation and RL based beam-
forming. The SNR due to the targets decrease by 20% every 30 time units.

In the results of the second experiment shown in Figure 3, they again find that the RL based
system outperforms the equal power allocation system. The RL based system is less sensitive to
decrease in SNR once it has learned the location of the targets. However, in he case of equal
power allocation, the probability of detection significantly reduces due to the decrease in SNR of
radar echos from a target. The authors also show that their RL based system outperforms the
equal power allocation system at very low constant false alarm rates and very high antenna array
resolutions.

Although only target detection is considered in this work, the superior performance of the
RL based system in dynamic environments indicates the possibility of its success even for target
tracking. Indeed, the application of RL to more complicated tasks such as tracking is currently of
high interest in cognitive radar research.

7.3 Reinforcement Learning based Anti-jamming Frequency Hopping Strate-
gies Design for Cognitive Radar

The performance of a radar can be severely affected when the receiver is overwhelmed with noise and
this aspect of radars is sometimes exploited to disrupt its functioning. The deliberate disruption of
a radar by saturating the receiver with noise or false information is called radar jamming. Jamming
is often used during military operations to ensure that the enemy’s radars cannot detect airplanes,
tanks, etc.

In order to jam a radar, the jammer needs to know the radar’s frequency band of operation. This
is because it is not feasible in terms of power for a jammer to transmit noisy signals in all frequency
bands (e.g., white noise). Moreover, the noise amplitude should be high enough to saturate the
received radar echos and make detection impossible for the radar. But once the frequency band
of operation of the radar is known, the jammer can transmit noisy signals in only these frequency
bands to jam the radar. The scenario thus plays out as follows: the jammer constantly tries to
figure out the frequency of operation of the radar and the radar in turn seeks to evade the jammer
by trying to figure out (or avoid) the frequency of operation of the jammer. In other words, there
is a continuous competition between the strategies of the jammer and the radar.

A naive strategy for the radar to avoid the jammer would be to randomly change its carrier
frequency. This is called frequency hopping. However, if the radar could instead learn the jammer’s
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strategy, it could optimize the use of its resources. This idea leads to the conception of a kind of
cognition that involves intelligently avoiding jammers present in the radar’s environment.

Kang et al. [8] tackle this problem using RL. They propose an RL based technique wherein
the RL agent aims to learn/discover the jammer’s strategy and intelligently hop the radar carrier
frequency to avoid jamming. They experimentally show that the RL approach is significantly better
than a random hopping strategy. Their RL framework is described as follows

• States: Each carrier frequency is a state. Hence, the number of states is determined by the
set of carrier frequencies that the radar is capable of using.

• Action: A hop to a specific carrier frequency constitutes the action.

• Reward: The signal-to-interference-plus-noise ratio (SINR) is used as a reward. The frequen-
cies at which the jammer is active will result in lower SINRs than the frequencies that are
not jammed. The SINR can hence indicate the presence of a jammer.

Since the goal of the RL agent is to learn the actions that produce maximum rewards, the
agent learns to hop the carrier frequencies to produce the best SINR, which consequently avoids
the jammer. Simulations were performed to demonstrate the effectiveness of their method. A pulse
wave radar with a coherent processing interval (CPI) of N = 100 pulses was considered where the
carrier frequency is changed within a CPI. The radar’s carrier frequency ranges from 3GHz to
5GHz in steps of 1MHz. The simulation was performed for three methods —Q-learning based
RL agent, DQN based RL agent and a random hopping strategy. Deep Q-network (DQN) [9] is
another RL learning algorithm that combines the Q-learning method with a neural network.

The simulation results are shown in Figure 4. It is observed that the RL based methods have a
significantly higher SINR than the random hopping strategy and hence result in better performance
for the radar. This also indicates that the RL based radar has avoided the jammer better than the
random hopping radar. Moreover, the RL agent that is trained using the DQN algorithm performs
better than the agent trained using the Q-learning algorithm.

Figure 4: Performance comparison of the different methods

These results show the effectiveness of RL in avoiding jamming and ensuring security of radars.
The cognitive element in this case is the ability of the radar to intelligently avoid jamming. Indeed,
cognition could also be used to intelligently jam a radar! Wang et al. [10] propose such a method
wherein the RL agent aims to maximize the jamming-plus-noise-to-signal ratio (JNSR). They show
that their method is more effective in jamming radars than a random frequency hopping jamming
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strategy. Thus, cognition for security, particularly in military radars, plays an important role in
both defensive and offensive situations.

7.4 A Machine Learning Radar Scheduling Method Based on the EST Algo-
rithm

The functionality of radars is diverse, ranging from target detection and tracking in dynamic envi-
ronments to imaging applications. Each of these functions involve multiple tasks to be processed.
In certain applications like the military, radars are required to process several functions and their
constituent tasks in real-time (within time constraints). Hence, such a radar must be able to op-
timize its resources to meet the application’s demands. In this sense, the radar can be viewed
as a real-time system. An important aspect of resource and time optimization is the scheduling
of different tasks. Several algorithms such as the shortest job first, highest priority first, soonest
completion time first, earliest start time first, etc., are commonly used in real-time systems to
schedule different tasks. However, these algorithms operate according to a fixed set of rules that
cannot be modified dynamically. This leads to the idea of making real-time systems schedule tasks
dynamically like humans do, i.e., intelligently schedule tasks according to the situation.

Qu et al. [11] propose a RL method based on the earliest start time algorithm (EST) that
improves the task scheduling performance when compared to the traditional EST algorithm, while
maintaining a computational time that is suitable for real-time applications such as radars. They
compute a total cost for scheduling a sequence of tasks and minimize this cost to find the optimal
sequence. The total cost (J) of scheduling a sequence of Nactual tasks is defined below:

J =
Nactual∑
n=1

C(n) (1)

Where C(n) is the cost for an individual task n and is defined in a mean-squared error format:

C(n) =
1

Nactual

[
p(n)

tstart(n)− tres(n)

τ

]2
(2)

Where tstart(n) is the required start time of the task, tres(n) is the rescheduled start time as
determined by the scheduler and p(n) is the priority of the task n. The priority overcomes one of
the drawbacks of the traditional EST algorithm which does not take into account the priority of
tasks. τ is defined as follows:

τ = |tearliest(n)− tstart(n)|, where tres(n) < tstart(n) (3)

τ = |tlatest(n)− tstart(n)|, where tres(n) ≥ tstart(n) (4)

The ratio tstart(n)−tres(n)
τ represents the deviation of the rescheduled time from the original start

time. Thus, the cost incurred is higher as the rescheduled time is farther away from the required
start time. Therefore, minimizing the cost will ensure least deviation of the rescheduled time from
the original start time. The earliest time tearliest(n) is the earliest possible time that the task can
be scheduled and the latest time tlatest(n) is the latest possible time that the task can be scheduled,
beyond which the task would be useless. Hence, if the scheduler cannot schedule the task within
the time window [tearliest, tlatest] the task will be dropped. The process of scheduling the tasks is
written as shown in Equation 5. The EST algorithm takes the set of tasks along with their required
start times as input and returns a sequence of tasks with new scheduled start times.

tres(n) = EST [tstart(n)] (5)
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The authors make the observation that shifting the start time of each task and then providing
this as input to the EST algorithm will result in a differently scheduled sequence and a different
total cost. Thus, adjusting the time shift tshift of each task effectively can potentially reduce the
total cost incurred.

RL is used to learn the adjustments that would result in the sequence of tasks that incur the
least cost. In the RL framework, the set of tshift are the states and switching to a new tshift
is an action. At each new state, the total cost J is evaluated. If J is lesser than the existing
value, then the RL agent gets a positive reward of 1 unit. Otherwise, the agent is punished with
a negative reward of 2 units. In this manner, the RL agent is able to learn the values of tshift
that can provide low total costs. However, this total cost may not be the global minimum. When
the number of tasks to be scheduled increases, it becomes infeasible to find the global minimum
for real-time applications and hence, a good and fast solution as proposed in this work is more
suitable. Simulation results have shown that this method is 20 times better than the traditional
EST scheduling algorithm.

8 Conclusion

The need to make machines intelligent is ever increasing in the modern world, and radars are no
exception. This incorporation of intelligence in the form of cognitive capabilities has resulted in
a new kind of radar called the cognitive radar. The cognitive radar as conceptualized by Simon
Haykin formed a basic framework. Significant advances in the field of machine learning has provided
a robust mathematical framework for cognition that can be used even for radars. It is hence
not surprising that the design of cognitive radars is now one of the most active research topics
in the radar domain. As indicated in this paper, reinforcement learning seems to be the most
accurate mathematical framework that incorporates the notion of “learning from experience”. It
has been used to develop cognitive radars that apply intelligence in various aspects such as for
beamforming, security, resource optimization, etc. Furthermore, there is immense scope in various
other applications. Yet, cognitive radars of the present are intelligent only in specific aspects. The
frontiers of cognitive radar would be the design of multi-functional radars, i.e., radars that can be
used in different environments and perform various applications. Such radars could greatly help
reduce the cost of deployment in several environments.
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